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Introduction
Capturing low-duty-cycle pulsed signals with high
quality and real-time feedback are crucial require-
ments in many applications in optics and photonics,
nanotechnology andmaterials science, quantum tech-
nologies, scanning probe microscopy, and sensing.
Boxcar averagers are attractive tools to achieve a high
signal-to-noise ratio (SNR) in a minimal amount of
measurement time when working with low-duty-cycle
signals. Such signals contain relevant information
only in a fraction of each period; outside of that short
interval only noise is present. A boxcar averager
captures the signal from a well-defined temporal
window in each period, meaning that all signal com-
ponents outside of that window are rejected. Unlike a
digitizer or an oscilloscope, the measurement results
are immediately available in the digital domain and
as analog signals with a user-defined offset and
scaling factor. Moreover, integrated PID controllers
can process the results to create feedback loops and
a lock-in amplifier unit can perform demodulation
on the boxcar results if an additional modulation is
present.

In this white paper, we illustrate the working princi-
ple of a digital boxcar averager, elucidate the relevant
measurementparameters, present the state of theart,
and provide guidelines for the best choice of measure-
ment technique when working with periodic signals.

Basic working principle

In a typical periodic pulsed signal the information is
contained in a short pulse of duration Tp, with a signifi-
cantwaiting timebetween individual pulses, as shown
in Figure 1 (a). The signal can be characterized by its
duty cycle d = Tp/Trep, where Trep = 1/frep is the in-
verse of the repetition rate frep of the pulses. If the
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Figure 1. Workingprinciple of aboxcar averager. (a) Typical input sig-
nal from a pulsed experiment, where Tp is the pulse width and Trep
is the repetition period. (b) Schematic illustration of a boxcar func-
tion, also known as rectangular pulse train, with a pulse width Tbox.
(c) Resulting signal after themultiplication of the input signal with a
boxcar function. Noise contributions outside of the boxcar window
are rejected. (d) The signal is integrated during each boxcar window,
and finally, the result is averaged over N periods.

duty cycle is low, measuring continuously in time re-
sults in a low SNR, as the time intervals between indi-
vidual pulses contribute to the captured noise but not
to the signal. With a boxcar averager it is possible to
acquire the signal only during the pulse duration, ig-
noring the time intervals between pulses. This corre-
sponds to a multiplication of the input signal with a



boxcar function, which is a rectangular pulse train as
shown in Figure 1 (b). By matching the period of the
boxcar functionTrep, theboxcarwindowwidthTbox, and
its positionwith respect to the signal pulses, the noise
between signal pulses can be discarded as illustrated
inFigure1 (c). The signal is then integratedover thedu-
ration of Tbox. Finally, the integrated signal is averaged
over N periods as indicated in Figure 1 (d).

Boxcar parameters and their effects
While the repetition rate of the boxcar averager is de-
termined by the repetition rate of the input signal, the
boxcar window and the number of averaging periods
can be adjusted to optimize the SNR.

Boxcar window
The width of the boxcar window Tbox and its position
with respect to the signal pulses are important pa-
rameters when optimizing the SNR. Assuming white
noise, the ideal boxcar window width can be calcu-
lated for a known pulse shape and repetition rate. In
Figure 2 (a) we show one period of a periodic signal
with Gaussian pulses given by p(t) = Aexp[−0.5t2/σ2],
where σ = 0.04 Trep is the root mean square width. We
can now calculate the fraction of the signal sbox cap-
tured when the signal is integrated over a boxcar win-
dow of width Tbox. For a rectangular boxcar window
centered at the Gaussian pulse, sbox is given by

sbox =
∫ Tbox/2

−Tbox/2
p(t)dt (1)

and increases with Tbox until the full pulse is captured.
However, the captured noise also increases with Tbox.
In the case of white noise, the captured noise nnox
increases proportionally to the square root of the
boxcar window width, namely nbox ∝

√
Tbox.

Figure 2 (b) shows examples of sbox, nbox, and the
SNR = sbox/nbox as functions of Tbox. Here, the noise
was scaled such that SNR = 0.6 if the whole period is
captured, i.e., when Tbox = Trep . One can observe that
the captured signal increases with the boxcar window
width until it approaches an amplitude of 1 when the
full pulse is captured by the boxcar window. Once
the signal is completely captured, the SNR scales
with

√
Trep/Tbox due to the rejection of noise outside

of the boxcar window. The maximum SNR can be
achieved by choosing a boxcar window that does not
capture the full pulse. In this example, the SNR is
maximized when 84% of the signal is captured, which
corresponds to Tbox ≈ 2.8σ ≈ 0.11 Trep as illustrated
in Figure 2 (a).

In a realmeasurement, it is convenient to optimize the
SNR by starting with a large boxcar window and then
reduce its width until the the SNR peaks.
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Figure 2. Boxcarwindowoptimization. (a) Gaussian pulsewith stan-
dard deviation σ = 0.04 Trep and a boxcar window with ideal width.
(b) Signal, noise and SNR for the Gaussian pulse as functions of
the boxcar width Tbox. Measuring the full period results in SNR =
0.6. With an ideal boxcar window width of Tbox ≈ 2.8σ ≈ 0.11 Trep,
SNR ≈ 1.5 can be achieved.

Averaging periods

After discarding the noise contributions between
pulses, the signal is integrated over the duration of
each boxcar window and then averaged over multiple
periods using a moving average filter. Instead of defin-
ing an averaging time Tavg, it is convenient to define
the number of boxcar periods N = Tavg/Trep over which
the signal is averaged. Assuming a white noise floor
and an ideal boxcar window, the captured signal in-
creases linearly with N, whereas the noise contribu-
tion increases as the square root of the sum of the
squares of the captured noise. For N boxcar periods,
the resulting SNR is therefore given by

SNR =

∑N
i=1 sbox√∑N
i=1 n

2
box

=
Nsbox√
Nn2

box

=
sbox
nbox

√
N (2)

where we assume that the signal sbox and noise nbox
are the same in each period.

Spectral response

The output of the boxcar averager Outbox can be calcu-
lated in the time and the frequency domains using the
Plancherel theorem [1]:

Outbox =
∫ NTrep/2

−NTrep/2
B(t)S(t)dt

=

∫ ∞

−∞
B̂N(ω)Ŝ(ω)dω

(3)

where B(t) and S(t) are the boxcar function and the
input signal in the time domain, respectively, and B̂(ω)

and Ŝ(ω) are their Fourier transforms. To account for
the finite number of averaging periods, we introduced
B̂N(ω) as the Fourier transform of a boxcar function
with N pulses. To understand the spectral response of
a boxcar averager, we discuss B(t), B̂(ω), and B̂N(ω)
in more detail.
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Figure 3. Spectral and temporal response. (a) Fourier transformof a
signalwithaduty cycle of d = 0.1andN = 200periods. (b) Envelope
functions of the Fourier transform. The coefficients am are shown
as a function of frequency for three different values of duty cycle:
d = 0.05, d = 0.1 and d = 0.2. (c) Fourier transform of a signal with
a duty cycle of d = 0.1 and N = 5 periods. (d) Temporal response.
Due to themovingaverageoverNperiods, the responseof theboxcar
averager is linear in time and reaches the new value after N periods.

We start by considering an infinite number of averag-
ing periods and use the Fourier theorem stating that
a periodic function can be expressed as a sum of sine
and cosine terms. The boxcar function B(t) can thus
be expressed as

B(t) = a0+

∞∑
m=1

am cos(mω0t) (4)

where the sine terms are zero because B(t) is an even
function. The fundamental frequency ω0 = 2πfrep is
determined by the repetition rate of the pulses. The
coefficient a0 = d = Tbox/Trep corresponds to the duty
cycle, and the coefficients am are given by

am =
2

mπ
sin

(
mπTBox

Trep

)
. (5)

Hence the Fourier transform of a boxcar function
corresponds to a series of delta peaks at the har-
monics of the fundamental frequency frep, weighted
by the coefficients am. Equation 3 elucidates that a
boxcar averager captures the signal - and the noise -
contained in the harmonics, and it efficiently rejects
other frequency components.

For a large number of averaging periods, B̂N(ω) ap-
proaches B̂(ω). Figure 3 (a) shows an example of
B̂N(ω) for N = 200 with almost delta-like peaks at
the harmonics. The envelope of the Fourier trans-
form, i.e., the weighting of the peaks given by am,
can be identified as the normalized sinc function
sinc(x) = sin(πx)/(πx), with zero points given by
f/frep = 1/d. To illustrate the effect of the duty cycle,
we show Equation 5 for three different values of duty
cycle: d = 0.05, d = 0.1 and d = 0.2 (see Figure 3 (b)).
It can be observed that a lower duty cycle puts more
relative weight on contributions from higher harmon-
ics.

For a finite number of averaging periods, each peak
of B̂N(ω) turns into a sinc functions itself, with a
distance between zeros given by frep/N. Figure 3 (c)
provides an example of B̂N(ω)with N = 5 periods. The
signal is captured at the harmonics, but the side lobes
of the sinc function can result in leakage of noise
components into the measured signal. Adjusting the
number of averaging periods is therefore crucial for
the SNR. Without any averaging, i.e., for N = 1, the
sum of sinc functions becomes a single sinc function
corresponding to the envelope plotted in Figure 3 (b).

Themeasurement bandwidth f3dB is defined as the fre-
quency where the signal is attenuated by 3dB, corre-
sponding to approximately 0.71 of the amplitude. For
a boxcar averager, f3dB can be calculated from the am-
plitude decrease of the sinc function centered at zero
frequency:

sinc
(

N
frep

f3dB

)
=

√
10−3/10 ≈ 0.71, (6)

which gives

f3dB = c
frep
N

(7)

with c = sinc−1(
√
10−3/10) ≈ 0.44. The measurement

bandwidth depends linearly on the averaging periods
N and the repetition rate frep.

Temporal response

The temporal response of a boxcar averager is deter-
mined by the calculation of the average over N periods.
For a moving average filter, the temporal response is
linear in time, with a slope determined by N as illus-
trated in Figure 3 (d). After a change in the signal,
100% settling is obtained after N pulses. For imag-
ing applications, zero cross-talk between pixels can
be achieved by choosing ameasurement time equal or
larger than NTrep per pixel. A digital implementation
enables to monitor the signal continuously by provid-
ing intermediate results during the calculation of the
moving average over N periods.
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Summary of boxcar parameters and their effects

 Boxcarwindow: Thewindowwidth Tbox and its po-
sition determines the captured signal and noise.
Assumingwhite noise, the SNR increases approx-
imately with

√
Trep/Tbox. The SNR is often max-

imized for a window width smaller compared to
the full width of the input signal pulse.

 Averaging periods N: The integrated signal is av-
eraged over N periods using a moving average fil-
ter. Assuming white noise, the SNR increases
proportionally to

√
N.

 Spectral response: A short boxcar window Tbox
puts more relative weight on contributions from
higher harmonics. The number of averaging peri-
ods N determines the width of the sinc function
peaks at the harmonics.

 Themeasurement bandwidth f3dB scales linearly
with frep/N.

 Temporal response: The response of a boxcar av-
erager is linear in timewithaslopedeterminedby
the number of averaging periods N and the repe-
tition period Trep.

State of the art
The first analog boxcar averagers were built following
the principle of boxcar averaging described by Blume
and collaborators in 1961 [2]. More recently, the de-
velopment of analog-to-digital converters with high
speed, resolution and linearity has enabled the real-
ization of digital instruments where all calculations
are carried out numerically by digital signal process-
ing on a fast field-programmable gate array (FPGA).
The Zurich Instruments UHF-BOX Boxcar Averager [3]
shown in Figure 4 (a) is the only digital boxcar averager
on the market today. It enables dead-time-free op-
eration up to a repetition rate of 450MHz, and offers
additional features such as a periodic waveform ana-
lyzer (PWA) and the possibility for baseline suppres-
sion. Control and readout of all instrument settings
andmeasurement parameters are achieved thanks to
the LabOne® user interface shown in Figure 4 (b) or
through application programming interfaces (APIs).

Analog vs digital operation

Analog boxcar averagers are based on a trigger-
controlled gate window during which the signal is
acquired and integrated, therefore they are often
referred to as gated integrators. Controlling the
boxcar window with individual trigger pulses has the
advantage that both periodic and also non-periodic
input signal pulses can be processed. However,
the trigger re-arm time - caused by the finite time
required to erase the integrator - can be several mil-
liseconds long and constitutes a significant limitation
for fast pulse sequences. Additionally, the boxcar
window of an analog boxcar averager is not perfectly
rectangular due to the rising time of the gate, and

b

a

Figure 4. Zurich Instruments UHF-BOX Boxcar Averager [3]. (a) The
instrument provides two signal input and two signal output chan-
nels with 600 MHz bandwidth, as well as multiple trigger and aux-
iliary channels and a 32-bit DIO port. (b) Screenshot of the LabOne®

user interface. The Boxcar Averager tool is shown in the top panel:
boxcar window and referencewindow can be set using the PWA. The
bottom panel shows the Plotter tool, where the boxcar result is dis-
played over a period of 10 s. The math tab of the Plotter tool allows
users to calculate relevant information from the visualized result
such as average, standard deviation and SNR.

the reliance on a trigger signal causes jitter. In the
digital UHF-BOX Boxcar Averager, the input signal
is digitized using an analog-to-digital converter; the
subsequent multiplication with the boxcar function
and averaging operation are performed in the digital
domain. This process makes it possible to achieve an
almost perfect rectangular boxcar window without
dead time. In this case, the rise time only depends
on the input bandwidth and sampling frequency,
and it enables operation at very high repetition rates
without signal loss. A simplified block diagram of the
UHF-BOXBoxcar Averager is shown in Figure 5 (a). The
signal is phase-locked to an internal oscillator so that
the boxcar window is defined in terms of the phase.
The phase-synchronous data processing of a periodic
signal is insensitive to trigger jitter and drift, and is
patented by Zurich Instruments [4]. The boxcar aver-
ager results can be routed internally to other tools, for
example to the lock-in amplifier unit if the duty cycle
of the signal is subject to an additional modulation, or
to the internal PID controllers for creating feedback
loops. Thanks to the digital calculation of the moving
average, intermediate results of the boxcar averager
output can be obtained and used to implement fast
feedback loops.

Table 1 provides a summary of the comparison be-
tween analog boxcar averagers and the digital UHF-
BOX Boxcar Averager.
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Feature Analog UHF-BOX
Insensitive to trigger jitter ✕ ✓

Rectangular boxcar window ✕ ✓

Intermediate results ✕ ✓

Measure non-periodic signal ✓ ✕

Graphical user interface ✕ ✓

Periodic waveform analyzer ✕ ✓

Flexible reference window ✕ ✓

Max. averaging periods 10 000 1Mio
Max. repetition rate for
dead-time-free operation < 50 kHz 450MHz

Table 1. Comparison between an analog boxcar averager and the
digital UHF-BOX Boxcar Averager.

Hardware requirements

A boxcar averager captures information from the fun-
damental frequency and many harmonics. Measuring
higher harmonics requires an input bandwidth of the
instrument that is at least several multiples of the
fundamental frequency, and an even higher sampling
rate.

Periodic waveform analyzer

Choosing the width and the position of the boxcar win-
dow can be challenging if the signal is buried in noise.
The UHF-BOX Boxcar Averager facilitates this process
by providing a periodic waveform analyzer (PWA) tool
displaying a single period of the input signal. If the
SNR is low, the input signal canbe averaged overmany
periods. In Figure 5 (b), the boxcar window is defined
with respect to the phase of the reference oscillator. If
the pulse cannot be resolved when measuring the full
period, the PWA makes it possible to increase the res-
olution by zooming in and displaying only a fraction of
the full period: this is done by referencing the signal
input to a higher harmonic of the reference oscillator.
With the PWAusers can also calculate the Fast Fourier
Transform of the input signal and thereby display and
analyze theweighting of the harmonicswith respect to
the fundamental frequency.

Baseline suppression and arithmetic operations

In the UHF-BOX Boxcar Averager, inaccuracies due to
DC components and variable offsets can be removed
thanks to a reference window in the time interval
between pulses. This so-called baseline suppression
also enables the rejection of disturbing input signals
that are phase-shifted with respect to the signal
of interest at the fundamental frequency, such as
electronic reflections in the cables. The position of
the reference window can be chosen using the PWA,
as shown in Figure 5 (b).
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Figure 5. Features of the Zurich Instruments UHF-BOX Boxcar Av-
erager. (a) Simplified block diagram. The signal is phase-locked to
an internal oscillator, which enables to define the boxcar and refer-
ence windows in terms of the phase. (b) Periodic waveform analyzer
showing oneperiod of the input signal. Theboxcar and the reference
window are highlighted in grey. (c) Waveform recovery by sweeping
the boxcar window. The envelope of the pulse can be reconstructed
by choosing a boxcar window which is much shorter than the pulse
and sweeping it over the pulse duration.

The concept of a reference window is ideal for ex-
periments where the information of interest is only
present in every other pulse, as is the case in pump-
probe spectroscopy with pump-induced transmission
change. By setting two filter windows in the time
domain, individual signal components can be suc-
cessfully isolated.

The UHF-BOXBoxcar Averager offers two independent
boxcar units, each with baseline suppression, and a
built-in Arithmetic Unit. The Arithmetic Unit can pro-
vide real-time results based on a combination of two
parallel boxcar measurements with arbitrary scaling
factors, for example to capture dI/I on a shot-to-shot
basis by normalizing the result with a second boxcar
measurement.
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Scope or Digitizer Boxcar Window Sweep Periodic Waveform Analyzer
Measurement SNR low high medium
Measurement time resolution high medium medium
Measurement amplitude resolution medium high high
Measurement speed fast slow fast
Insensitivity to trigger jitter/drift ✕ ✓ ✓

Table 2. Comparison of the different tools for waveform recovery with a relative qualitative assessment.

Waveform recovery
For certain applications, it is not only the integrated
signal that holds an interest: the shape of the pulse
is equally relevant. There exist several tools to recover
the waveform of a periodic signal:

 An oscilloscope or digitizer card together with an
averaging operation.

 A periodic waveform analyzer.
 A boxcar averager combined with a sweep of the

position of the boxcar windowwith a width much
smaller than the pulse width.

If the SNR of the input signal is relatively high and a
reliable trigger source is available, an oscilloscope
or a digitizer card is generally the tool of choice. The
digitized input signal can be averaged over several pe-
riods using a trigger signal; alternatively, all raw data
can be saved for post-processing. The performance
of the measurement depends on the instrument’s
specifications including sampling rate, voltage resolu-
tion, and memory depth. For signals with a low SNR,
however, averaging over many periods is necessary
and can turn trigger jitter and trigger drift into limiting
factors.

For a periodic input signal with a low SNR, the wave-
form can be reconstructed with a boxcar averager.
The UHF-BOX Boxcar Averager offers a variable gain
input range amplifier to ensure high sensitivity and
low input noise, and it is insensitive to trigger jitter
and drifts given that the signal is locked to an internal
oscillator. The PWA tool of the UHF-BOX Boxcar
Averager, which was introduced above, is the method
of choice when speed is more important than time
resolution, for instance as a way to choose the boxcar
window. However, the time resolution is fixed at 1024
points per period and can become a limitation for
measuring wide pulses.

Alternatively, the waveform can be measured by
sweeping a short boxcar window across the pulse. For
this purpose, the boxcar windowwidth is chosen to be
much smaller than the width of the pulse as shown
in Figure 5 (c). With this approach, it is possible to
increase the SNR of the measurement by rejecting
noise components outside of the boxcar window.

With the UHF-BOX Boxcar Averager, a boxcar window
sweep is easily performed using the built-in Sweeper
tool; the ability to measure the integral and the shape
of thewaveformwith the same instrument guarantees
a simplified setup. The disadvantage of this strategy
is that it is relatively slow and sensitive to signal
intensity drifts as large parts of the data from every
period are discarded.

Table 2 summarizes the properties of different tools
for waveform recovery with a relative qualitative as-
sessment of their performance.

Boxcar averager vs lock-in amplifier

Lock-in amplifiers and boxcar averagers use different
methods to measure a periodic signal. A boxcar
averager captures information from the fundamental
frequency of the signal andmany harmonics, whereas
a lock-in amplifier performs a selective measurement
at a single frequency. The latter is achieved by multi-
plying the input signal with a reference signal that is
typically sinusoidal, followed by adjustable low-pass
filtering. The spectral response, measurement speed
and temporal response depend on the bandwidth and
the order of the low-pass filter as described in ref. [5].

When establishing which measurement approach is
better suited to a given experiment, some important
considerations are:

 What is the waveform of the input signal? Is it
a sine wave, a square wave, a train of periodic
pulses, or a more complex waveform?

 What is the duty cycle of the input signal?
 How low is the SNR of the input signal? What are

the properties of the noise?
 What are the requirements in terms of acquisi-

tion speed and settling time?

For a purely sinusoidal input signal, lock-in detec-
tion is generally the method of choice because the
experiment can be set up quickly and easily. A boxcar
measurement with the same measurement band-
width can give a slightly higher SNR with an optimized
boxcar window and baseline suppression. Optimizing
a boxcar measurement requires the control of more
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Figure 6. Comparison of the spectral response of a lock-in ampli-
fier and a boxcar averager. (a) Logarithmic plot of the spectral re-
sponse of a 1st-order low-pass filter centered at the fundamental
frequency. The typical noise floor consisting of white noise and 1/f
noise is shown with arbitrary amplitude. (b) Logarithmic plot of the
spectral response of a boxcar averager with a duty cycle of d = 0.05
and N = 20 periods with the same noise floor.

parameters compared to setting up a lock-inmeasure-
ment, however, and boxcar averagers are typically
more expensive due to the need for a larger signal
input bandwidth to capture higher harmonics.

The higher effort of setting up a boxcar measurement
becomes valuable for a square wave or a pulsed
signal. The lower the duty cycle of the input signal,
the more information is contained in the harmonics.
A boxcar averager allows experimenters to capture
this information by decreasing the boxcar window
width, thereby putting more relative weight on higher
harmonics. Capturing the information from higher
harmonics also leads to additional noise contributions
though. Overall, the true advantage of boxcar averag-
ing over lock-in detection depends on the properties
of the noise background.

Figure 6 (a) shows the typical noise floor of an exper-
iment, consisting of white noise and 1/f noise. The
spectral response of a 1st-order low-pass filter for a
lock-in amplifier is indicated around the fundamental
frequency frep. In this example, the noise at the fun-
damental frequency frep is dominated by 1/f noise. A
lock-in amplifier thus captures a significant amount
of noise, leading to a small SNR for this measurement.
Figure 6 (b) presents the spectral response of a boxcar
averager with a duty cycle of d = 0.05 and N = 20
averaging periods with the same noise background:
by capturing the information from the harmonics
where less noise is present, boxcar averaging results
in a significantly higher SNR in this scenario.
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Additionally, being able to define a reference window
in the time domain offers a very powerful way to
avoid systematic measurement errors due to noise
sources phase-shifted with respect to the signal of
interest, while making it possible to isolate individual
signal components as is required when measuring
pump-induced effects, for instance.

Finally, the filter function is a critical aspect for mea-
surement speed. Let’s consider a signal with frep =
10MHz. Reaching 99.9% settling with a 5th-order
low-pass filter and a filter bandwidth of f3dB = 34kHz
takes approximately 26μs (see ref. [5] for the calcula-
tion). By contrast, a boxcar averager with a bandwidth
of 34 kHz (N = 128 averaging periods) reaches 100%
settling after NTrep = 12.8 μs. In the case of video-rate
microscopy, for example, it is therefore easier to avoid
cross-talk between pixels with a boxcar averager.

In summary, lock-in measurements are easy to set up
and less demanding in terms of input bandwidth and
sampling rate. Boxcar averaging requires faster elec-
tronics and the optimization of several parameters,
but this added complexity becomes valuable for low-
duty-cycle pulsed signals where it enables to push the
limits in terms of SNR and measurement speed. The
best way to settle on ameasurement strategy is a one-
to-one comparison between a lock-in amplifier and a
boxcar averager. Alternatively, users can consider im-
plementing both methods simultaneously: this is pos-
sible on the Zurich Instruments UHFLI Lock-in Ampli-
fier with the UHF-BOX Boxcar Averager option [6].
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