メインコンテンツに移動
Search

Microfluidics/Single-Cell Detection & Sorting

Related Products: HF2LI, HF2LI-MF, HF2LI-PID, HF2TA, UHFLI

Application Description

Trends in biosystems engineering for cells and sub-cellular components (nucleus, RNA, DNA) have created a demand for electrical impedance spectroscopy with increased sensitivity over an ever broader range of frequencies. From the few MHz of the past, applications now extend into the high-frequency band. Furthermore, the ability to perform measurements at several frequencies simultaneously represents a clear advantage as it means that the impedance profile of a cell can be taken in real time.

Measurement Strategies

There exist three common methods for observing the size and the speed of a cell in a microfluidic channel.

The first is known as optical flow cytometry, and requires labelling the cells before these pass through a channel where laser light illuminates them and the resulting scattered light or fluorescence is detected. In addition to time-consuming sample preparation with dyes that can be toxic or expensive, maintaining and setting up the laser and the detection system limits the portability and robustness of this technique.

The second method is image-based cytometry, which relies on the use of a high-speed camera. Image processing is required to judge the size of cells before sorting them into different channels with a separate instrument. Typical cameras are limited in detection speed by their frame rate: it may take up to 200 microseconds to record a frame.

Microfluidics setup using the Zurich Instruments HF2LI Lock-in Amplifier

Figure 1: HF2LI and HF2TA measuring AC current changes as cells pass through differential electrodes in a microfluidics channel. The measured current is used to determine the size and speed of the cell, followed by real-time discrimination for cell sorting. Cells are sorted by an AC dielectrophoresis signal from Output 2 of the HF2LI, the frequency of which depends on the impedance signature of the cell.

The third alternative is impedance cytometry, which has a fast response time, is marker-free and allows for integrated sorting. The technique involves monitoring the change in the dielectric properties of the channel as the cell passes through it. One way to achieve this is by measuring the current change between electrodes integrated in the microfluidic channel with a lock-in amplifier such as the HF2LI Lock-in Amplifier and a matching current amplifier, as shown in Figure 1. The current variation is measured when a cell passes between the electrodes, and the signal from the fluid is rejected to a high degree thanks to the experiment's differential configuration. This provides a well-defined signal from which it is possible to infer both the size and the speed of the cell. In fact, the measured signal can be used directly to decide into which channel the cell should be diverted by means of an AC dielectrophoresis (ACD) signal. With the HF2LI, ACD and signal detection take place on the same instrument for a reduced complexity of the experimental apparatus.

The Benefits of Choosing Zurich Instruments

  • Simultaneous multi-frequency operation at up to 6 frequencies is ideal for cell characterization; fast and automated decisions are required for cell sorting.
  • Perform measurements on short time scales that are unavailable to camera-based solutions.
  • Varying the test signal frequency over a wide range of values allows you to optimise the sensitivity of your measurement.
  • Work in noisy fluid environments thanks to a differential measurement scheme.
  • An instrument that combines detection and sorting simplifies your setup by integrating functionalities effectively.

 

Start the conversation

Application Notes

Zurich Instruments

Electrical Impedance Spectroscopy for Single-Cell Analysis

Zurich Instruments

Microfluidic Impedance Flow Cytometer for Stem Cell Discrimination

Zurich Instruments

Monitoring of Cell Membrane Permeabilization in a Electroporation Device

Fluigent, Zurich Instruments

Impedance Spectroscopy for Characterization and Counting

Zurich Instruments

Application Brief - Microfluidic Electrical Impedance Spectroscopy

Publications

Haandbæk, N. et al.

Microfluidic sensor using resonance frequency modulation for characterization of single cells

Proceedings of the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences (2013)

Nelson, G.T.

Native and Radiation-Induced Defects in III-V Solar Cells and Photodiodes

Thesis, Rochester Institute of Technology

Contact Us