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Introduction
Lock-in amplifiers were invented in the 1930’s [1, 2, 3]
and commercialized [4] in the mid 20th century as
electrical instruments capable of extracting signal am-
plitudes and phases in extremely noisy environments
(see Figure 1). They employ a homodyne detection
scheme and low-pass filtering to measure a signal’s
amplitude and phase relative to a periodic reference.
A lock-in measurement extracts signals in a defined
frequency band around the reference frequency, effi-
ciently rejecting all other frequency components. The
best instruments on themarket today have a dynamic
reserve of 120 dB [5], whichmeans they are capable of
accuratelymeasuring a signal in the presence of noise
up to a million times higher in amplitude than the sig-
nal of interest.
Over decades of development, researchers have
found many different ways to use lock-in amplifiers.
Most prominently they are used as precision AC volt-
age and AC phase meters, noise measurement units,
impedance spectroscopes, network analyzers, spec-
trum analyzers and phase detectors in phase-locked
loops. The fields of research comprise almost every
length scale and temperature, such as the observa-
tion of the corona in full sunlight [6], measuring the
fractional quantum Hall effect [7], or direct imaging of
thebondcharacteristics betweenatoms in amolecule
[8]. Lock-in amplifiers are extremely versatile. As es-
sential as spectrum analyzers and oscilloscopes, they
are workhorses in all kinds of laboratory setups, from
physics to engineering and life sciences. As withmost
powerful tools, only a solid understanding of the work-
ing principles and features enables the user to get the
most out of it and to successfully design experiments.

This document provides a quick introduction to the
principles of lock-in amplification and explains the
most important measurement settings. The lock-in
detection technique is described both in the time and
in the frequency domain. Moreover, details are laid
out onhowsignalmodulation canbeexploited in order

to improve on signal-to-noise ratio (SNR) while keep-
ing acquisition time low. Finally, recent innovations
are discussed and the state of the art is described.

Lock-in amplifier working principle
Lock-in amplifiers use the knowledge about a sig-
nal’s time dependence to extract it from a noisy back-
ground. A lock-in amplifier performs a multiplication
of its input with a reference signal, also sometimes
called down-mixing or heterodyne/homodyne detec-
tion, and then applies an adjustable low-pass filter
to the result. This method is termed demodulation
or phase-sensitive detection and isolates the signal
at the frequency of interest from all other frequency
components. The reference signal is either generated
by the lock-in amplifier itself or provided to the lock-in
amplifier and the experiment by an external source.
The reference signal is usually a sine wave but could
have other forms, too. Demodulation with a pure sine
wave enables selective measurement at the funda-
mental frequency or any of its harmonics. Some in-
struments use a square wave [9] which also captures
all odd harmonics of the signal and, therefore, poten-
tially introducing systematic measurement errors.
To understand lock-in detection, we will look at both
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Figure 1. Lock-in amplifiers are capable ofmeasuring the amplitude
and the phase of a signal relative to a defined reference signal, even
if the signal is entirely buried in noise.
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Figure 2. (a) Sketch of a typical lock-in measurement. A sinu-
soidal signal drives the DUT and serves as a reference signal. The
response of the DUT is analyzed by the lock-in which outputs the
amplitude and phase of the signal relative to the reference signal.
(b) Schematic of the lock-in amplification: the input signal is multi-
plied by the reference signal and a 90◦ phase-shifted version of the
reference signal. The mixer outputs are low-pass filtered to reject
the noise and the 2ω component, and finally converted into polar
coordinates.

the time and the frequency domain, first for mixing
and then for the filtering process.

Dual-phase demodulation
In a typical experiment, the device under test (DUT)
is stimulated by a sinusoidal signal, as shown in Fig-
ure 2 (a). The device response Vs(t) as well as the refer-
ence signal Vr(t) are used by the lock-in amplifier to de-
termine the amplitude R and phase θ. This is achieved
using a so-called dual-phase demodulation circuit, as
illustrated in Figure 2 (b). The input signal is split and
separately multiplied with the reference signal and a
90◦ phase-shifted copy of it. The outputs of the mix-
ers pass through configurable low-pass filters, result-
ing in the two outputs X and Y, termed the in-phase
and quadrature component. The amplitude R and the
phase θ are easily derived from X and Y by a transfor-
mation from Cartesian coordinates into polar coordi-
nates using the relation

R =
√
X2 + Y2,

θ = atan2 (Y,X). (1)

Note that in order to have an output range for the
phase angle that covers all four quadrants, i.e. (−π, π],
atan2 is used instead of atan.
Figure 2 (b) shows that the lock-in amplifier has to split
up the input signal in order to demodulate it with two
different phases. Contrary to analog instruments, dig-
ital technology overcomes any losses in SNR and mis-
match between the channels when splitting the sig-
nal.
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Figure 3. Demodulation process represented in the complex plane.
(a) The input signal Vs(t) canbeexpressedas the sumof twocounter-
rotating vectors. (b) The projections onto the x-axis add upwhereas
the projections to the imaginary y-axis cancel each other out. (c)
In the rotating frame the counter-clockwise vector is standing still,
the clockwise moving vector rotates at twice the observer’s angu-
lar velocity. Note that by convention, θ is positive if the counter-
clockwise vector is ahead of the reference.

Signal mixing in the time domain
Complex numbers provide an elegant mathematical
formalism to calculate the demodulation process. We
use the elementary trigonometric law

cos(x) =
1
2
e+ix +

1
2
e−ix (2)

to rewrite the input signal Vs(t) as the sum of two vec-
tors in the complex plane, each one of length R/

√
2

rotating at the same speed ωs, one clockwise and the
other counter-clockwise:

Vs(t) =
√
2R · cos(ωst+ θ)

=
R√
2
e+i(ωst+θ) +

R√
2
e−i(ωst+θ). (3)

In the graphical representation given in Figure 3 (a)
and (b) one can see that the vectors’ sum projected
on the x-axis – the real part – is exactly Vs(t), whereas
the vector sum projection onto the y-axis – the imagi-
nary part – is always zero.
The dual-phase down-mixing is mathematically ex-
pressed as amultiplication of the input signal with the
complex reference signal

Vr(t) =
√
2 e−iωrt =

√
2 cos(ωrt)− i

√
2 sin(ωrt). (4)

The complex signal after mixing is given by

Z(t) = X(t) + iY(t) = Vs(t) · Vr(t)

= R
[
ei[(ωs−ωr)t+θ] + e−i[(ωs+ωr)t+θ]

]
, (5)

with signal components at the sum and the difference
of the signal frequency and the reference frequency.
In the picture of Figure 3 (c), the complex mixing is
equivalent to an observer located at the origin and ro-
tating in a counter-clockwise direction with frequency
ωr.
In the eyes of this observer, the two arrows appear
to rotate at different angular velocities ωs −ωr and
ωs +ωr, with the arrow ωs +ωr rotating much faster
if the signal and reference frequencies are close.
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Figure 4. (a) An input signal Vs (red) with peak amplitude of 0.5 V is
multiplied with the reference signal Vr (blue) at the same frequency.
(b) The resulting signal has a DC offset and a frequency component
at twice the frequency of Vs and Vr. The DC value is 0.17 V, which is
the in-phase component X of the input signal. (c) The input signal
Vs is multiplied by a reference Vr at a different frequency. (d) The re-
sulting signal has frequency components at fs − fr and fs + fr. The
average signal is always zero.

The subsequent filtering is mathematically expressed
as an averaging of the moving vectors over time, in-
dicated by the angle brackets ⟨· · · ⟩. Filtering strips
away the fast rotating term at |ωs +ωr| by setting
⟨exp [−i (ωs +ωr) t+ iθ]⟩ = 0. The averaged signal af-
ter demodulation becomes

Z(t) = R · ei[(ωs−ωr)t+θ]. (6)

In the case of equal frequencies ωs = ωr, this further
simplifies to

Z(t) = R · eiθ. (7)

Equation 7 is the demodulated signal and the main
output of the lock-in amplifier, with the absolute value
|Z| =Rgiven as the root-mean-square amplitudeof the
signal and its argument arg(Z) = θ given by the phase
of the input signal relative to the reference signal.
The real and imaginary parts of the demodulated sig-
nal Z(t) are the in-phase component X and the quadra-
ture component Y. They are obtained using Euler’s for-
mula exp(iωst) ≡ cos(ωst) + i sin(ωst) as:

X = Re(Z) = ⟨Vs(t) cos (ωst)⟩ = R cosθ,
Y = Im(Z) = −⟨Vs(t) sin (ωst)⟩ = R sin θ. (8)

In the graphical view, ωs = ωrmeans that the arrow ro-
tating counter-clockwisewill appear at rest. The other
arrow is rotating clockwise at twice the frequency, i.e.
−2ωs, and is often called the 2ω component. The low-
pass filter usually cancels out the 2ω component com-
pletely.
Figure 4 illustrates the different signals before and af-
ter mixing and filtering as they would appear on an os-

cilloscope. Figure 4 (a) shows the sinusoidal example
signals Vs and Vr over time having exactly the same
frequencies ωs and ωr. The signal after mixing, blue
trace in Figure 4 (b), is dominated by the 2ω compo-
nent. After filtering, green trace, only the DC compo-
nent remains, which is equal to the in-phase ampli-
tude X of Vs. If the signal frequency and the reference
frequency deviate, as shown in Figure 4 (c), the result-
ing signal after mixing is no longer a simple sine wave
and averages out to zero after filtering, as shown in
Figure 4 (d). It is the perfect example of synchronous
detection, which exclusively extracts signals coherent
with the reference frequency and discards all others.

Signal mixing in the frequency domain
To switch between the timedomain and the frequency
domain picture, we use the Fourier transform [10]. The
Fourier transform is linear and converts a sinusoidal
function with frequency f0 in the time domain into a
Dirac delta function δ(f-f0) in the frequency domain, i.e.
a single peak at frequency f0 in the spectrum. As any
periodic signal can be expressed as a superposition of
sines and cosines [11], transformations of signals con-
sisting of only a few spectral components can often
be intuitively understood.
Figure 5 (a) shows a noisy sinusoidal represented in
the time domain, which is then Fourier transformed
into the frequency domain in Figure 5 (b). The sinu-
soidal signal shows up as a peak both at +fs and at−fs
in the spectrum. The smaller peak at zero frequency is
caused by the input signal’s DC offset. The blue trace
in Figure 5 (c) represents the time domain signal after
mixing. The associated spectrum shown in Figure 5 (d)
is essentially a copy of the one in (b) shifted by the ref-
erence frequency fr towards lower frequencies.
Low-pass filtering is indicated as a dashed red trace
in (d) and selects the frequencies up to a certain fil-
ter bandwidth fBW. The output signal, red trace in (c),
is the DC component of the spectrum visualized in (d)
plus the noise contribution within the filter bandwidth
|f| < fBW. It is evident from this picture that a filter band-
width significantly smaller than the signal frequency
fs is required to efficiently suppress offsets in the in-
put signal. In the next sections, we’ll discuss further
criteria for choosing suitable filter characteristics in a
given experimental situation.

Low-pass filtering in the frequency domain
For the low-pass filtering we start by considering the
frequency domain because for most filters there is
a simple relationship between the incoming signal
Qin(ω) and the filtered signal Qout(ω) given by

Qout(ω) = H(ω)Qin(ω). (9)

H(ω) is called the transfer function of the filter. Qin(ω)
and Qout(ω) are the Fourier transforms of the time do-
main input signal Qin(t) and output signal Qout(t) re-
spectively.
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Figure 5. Relationship between time and frequency domain repre-
sentation before and after demodulation. (a) Sinusoidal input signal
superimposed with noise displayed over time. (b) Same signal as in
(a) represented in the frequency domain. (c) After mixing with the
reference signal (blue trace) and low-pass filtering (red trace), the
signal spectrum up to fBW remains. (d) In the frequency representa-
tion, the frequency-mixing shifts the frequency components by−fr.
The filter then picks out a narrow band of fBW around zero. Note the
component at frequency−fr, which comes fromoffset and 1/f noise
in the input signal. To obtain accurate measurements this compo-
nent has to be suppressed by proper filtering.

To perfectly reject unwanted parts of the spectrum,
one might think that an ideal filter should have full
transmission for all frequencies below fBW, i.e. the
passband, and zero transmission for all other frequen-
cies, also called the stop band. Unfortunately such
idealized “brick-wall filters” are impossible to realize
since their impulse response extends from−∞ to+∞
in time, which makes them non-causal. As a basic ap-
proximation, we consider the RC filter model, see Fig-
ure 6. This type of filter is easy to implement both in
the analog and the digital domain. The transfer func-
tion of an analog RC filter is well approximated by

H(ω) =
1

1+ iωτ
, (10)

where τ = RC is called the filter time constant with
the resistance R and capacitance C. The blue traces
in Figure 7 (a) and (b) show this transfer function in
Bode plots, 20log|H(2πf)| and arg[H(2πf)] as functions
of log(f).
From the blue curve in Figure 7 (a) we can infer that
the attenuation grows ten times every tenfold fre-
quency increase above f−3dB. This equals 6 dB/octave
(20 dB/decade) corresponding to an amplitude reduc-
tion by a factor of 2 every doubling of the frequency.
Thecut-off frequency f−3dB is definedas the frequency
at which the signal power is reduced by −3 dB or one
half. The amplitude, proportional to the square root
of the power, is reduced by 1/

√
2 = 0.707 at f−3dB.

First-order RC Low-pass Filter

Qin(ω) R C

H(ω) = 1
1 + iωRC

Qout(ω)

Higher-order RC Low-pass Filter

Qin(ω) R C R CR C

H(ω) = 1
1 + iωRC

Qout(ω)

Stage 1 Stage 2 Stage 3

n

a

b

Figure 6. (a) First-order RC filter and its transfer function formula.
(b) Steeper roll-offs towards higher frequencies are achieved by
stacking multiple RC filters. The transfer function results from a
multiplication of each filter’s transfer function.

For the filter described by Equation 10, the cut-off fre-
quency is f−3dB = 1/(2πτ ). From Figure 7 (b) we see that
the low-pass filter also introduces a frequency depen-
dent phase delay equal to arg[H(ω)].
Compared to the idealized brick-wall filter, the first-
order filter has a fairly poor roll-off behavior. To in-
crease the roll-off steepness it is common to cascade
several of these filters. For every filter added the filter
order is increased by 1. Since the output of one filter
becomes the input to the following one, we can simply
multiply their transfer functions. From Equation 9 we
thus get the following transfer function of an nth order
filter:

Hn(ω) = H1(ω)n =
(

1
1+ iωτ

)n

. (11)

Its attenuation is n times the attenuation of a first-
order filter, with a total roll-off of n × 20 dB/dec. The
frequency responses of a 1st, 2nd, 4th and an 8th order
RC filter are shown in Figure 7 (a) and (b). The higher
the filter order, the closer the amplitude transfer func-
tion gets to a brick-wall filter behavior. At the same
time, the phase delay increases with filter order. For
applications where the phase is used to apply a feed-
back to a system, for example phased-locked loops,
any additional phase delay can limit the stability and
bandwidth of the control loop.

Figure 8 (a) and (b) show the Bode plots for filters of
different orders with the same bandwidths f−3dB but
different time constants. Table 1 provides the numer-
ical relationship between corresponding filter proper-
ties.
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0.16, 0.10, 0.069, 0.048. (a) Higher-order filters show a steeper roll-
off towards higher frequencies. (b) Higher-order filters have larger
phase delays, which can be detrimental for feedback applications.
(c) Step response as a function of time in units of the time con-
stant τ 1 of the first-order filter. Though lower-order filters respond
more quickly to changes of the input signal at the beginning, this ad-
vantage decreases over time and at some point higher-order filters
even “overtake” lower-order filters, as seen in the inset.

Order Time Roll-off Bandwidth in units of 1/τ Settling times in units of τ
n constant τ dB/oct dB/dec f−3dB fNEP fNEP/f−3dB 63.2% 90% 99% 99.9%

1 1 6 20 0.159 0.250 1.57 1.00 2.30 4.61 6.91
2 1 12 40 0.102 0.125 1.23 2.15 3.89 6.64 9.23
3 1 18 60 0.081 0.094 1.16 3.26 5.32 8.41 11.23
4 1 24 80 0.069 0.078 1.13 4.35 6.68 10.05 13.06
5 1 30 100 0.061 0.069 1.12 5.43 7.99 11.60 14.79
6 1 36 120 0.056 0.062 1.11 6.51 9.27 13.11 16.45
7 1 42 140 0.051 0.057 1.11 7.58 10.53 14.57 18.06
8 1 48 160 0.048 0.053 1.10 8.64 11.77 16.00 19.62

Table 1. Overview of the filter properties of nth order RC filters with the same time constant. Dynamic applications usually take into consid-
eration f−3dB and settling times, whereas for noise measurements taking into account the correct fNEP is key to achieve accurate results. With
the relations given above one can easily calculate filter time constants for filters of the same bandwidth but different order.
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For noise measurements, it’s often more useful to
specify a filter in terms of its noise equivalent power
bandwidth fNEP, rather than the 3 dB bandwidth f−3dB.
The noise equivalent power bandwidth is the cut-off
frequency of an ideal brick-wall filter that transmits
the same amount of white noise as the filter we wish
to specify. For cascadedRC filters, the conversion fac-
tor between fNEP and f−3dB is listed in Table 1.
After mixing the input signal Vs(t) with the reference
signal

√
2 exp (−iωrt), the input signal spectrum is

shifted by the demodulation frequency ωr and be-
comes Vs(ω−ωr). Low-pass filtering further trans-
forms the spectrum through a multiplication by the
filter transfer function Hn(ω). The demodulated sig-
nal Z(t) contains all frequency components around the
reference frequency, weighted by the filter response

Z(ω) = Vs(ω−ωr)Hn(ω). (12)

This equation clearly shows that demodulation be-
haves like a bandpass filter in that it picks out the
frequency spectrum centered at fr and extending on
each side by f−3dB. Moreover, it shows that one can re-
cover the spectrum of the input signal around the de-
modulation frequency fr by dividing the Fourier trans-
form of the demodulated signal by the filter transfer
function. This form of spectral analysis is often used
by FFT spectrumanalyzers and sometimes referred to
as zoomFFT [12].

Low-pass filter in the time domain
The time domain characteristics of a filter is best vi-
sualized by its step response, as shown in Figure 7 (c)
and Figure 8 (c). These plots correspond to a situa-
tion where the input of the filter is changed in a step-
like fashion from 0 to 1. A certain amount of time will
be needed before the filter output settles at the new
value. In order to measure a signal that has passed
through a filter accurately, the experimentalist must
wait for a settling time long enough before taking the
measurement.
Table 1 lists the times to reach 63.2%, 90%, 99% and
99.9% of the final value for filters of different orders
but identical timeconstant τ . Assumewehavea 1MHz
signal and want to use a 4th-order filter with a band-
width of 1 kHz around 1 MHz. From the numbers given
in Table 1 we can derive that the time constant is 69 μs
and the settling time to 1% error is 0.7 ms.

Signal dynamics and demodulation
bandwidth
Setting the demodulation bandwidth is often a trade-
off between time resolution and SNR. Let’s consider
an amplitudemodulated (AM) input signal with carrier
frequency fc = ωc/2π,

Vs(t) = [1+ hcos(ωmt)] cos(ωct+ φc) (13)

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

si
gn

al
 a

m
pl

itu
de

 (V
)

0 4 8 12
time (ms)

1 + h

1 – h

1 + h cos(ωmt)

Figure 9. Amplitudemodulated signal: the green trace is the carrier
input signal (displayed at a lower frequency for clarity). The blue
trace indicates the signal amplitude, which is the envelope of the
input signal.

represented in Figure 9 as an example to dis-
cuss how requirements for different experimen-
tal questions can be met. The signal amplitude
R(t) = 1+ hcos(ωmt), the blue trace in the Figure 9,
is modulated at a frequency fm = ωm/2π around the
average value 1, where the modulation index h char-
acterizes the modulation strength. For this example
we choose carrier and modulation frequencies of fc =
2 kHz and fm = 100 Hz, respectively.
Using the complex representation introducedwith Fig-
ure 3, Figure 10 (a) shows the AM signal after mix-
ing. Its modulus |1+ hcos(ωmt)| is time-dependent
but its angle φc is constant. The term cos(ωmt) is
the sum of the two counter-rotating vectors exp(iωmt)
and exp(−iωmt). These two vectors represent the up-
per and lower sidebandsof the frequency spectrumof
anamplitudemodulated signal, as seen in Figure 10 (d).
Figure 10 (b) and (c) show the quadrature and in-phase
component, respectively.
Most applications requiremeasuring oneof the follow-
ing quantities:

1. the time dependence of the amplitude
R(t) = 1+ hcos(ωmt)

2. the average value of the amplitude ⟨R(t)⟩
3. the modulation index h

In the first situation, we would like the demodulated
signal to follow amplitude changes at a rate fm. This
requires a filter bandwidth significantly larger than fm.
Consider for instance a 4th-order filter with a band-
width of f−3dB = 500 Hz. With this choice, the trans-
mission at fm = 100 Hz (that is 100 Hz away from the
carrier fc) is about 98.5% and the phase delay is about
20◦ as one can calculate from Equation 11 and Table 1.
In other words, the modulation signal is only slightly
affected by the filter. The demodulated signal is dis-
played as the dashed black line in Figure 10 (b) and (c).
Apart from the desired sideband suppres-
sion/admission and phase delay, the amount of
noise in the measurement is an important criterion
in the choice of a filter. Figure 11 illustrates this
with an AM signal with relatively strong noise after
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red and cyan curves).

demodulation in (a). Panel (b) shows the same signal
after filtering with a cutoff frequency equal to the
modulation frequency. While this filter eliminates
most of the noise, it introduces systematic changes
in the amplitude and phase that need to be corrected
to get accurate results.
For the second set of requirements, frequency com-
ponents corresponding to the sidebands are rejected
by reducing the filter bandwidth to a value smaller
than fm. A 4th-order filter with f−3dB = 20 Hz, dashed
cyan line in Figure 10 (d), suppresses the sidebands by
0.03 or 30 dB. Figure 11 (c) illustrates the effect of such
a strong filter on the measurement.
In the third case, we want to know the modulation in-
dex h but don’t need to resolve the full signal dynam-
ics. This is used, for instance, in Kelvin probe force
microscopy, where h is a measure of the electrostatic
force between a probe and a sample in response to
an alternating voltage at fm. Since the modulation in-
dex is proportional to the amplitude of the sidebands,
this measurement can be performed by applying nar-
row filters around the sidebands at fc − fm and fc + fm.
There are two ways to do this: by so-called tandem
demodulation or by direct sideband demodulation.
In tandem demodulation, we first perform a wide-
band demodulation around the center frequency. The
resulting signal, typically looks similar to the one in Fig-
ure 11 (a), is then demodulated again at fm. The mod-
ulation frequency accessible with this method can’t
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Figure 11. (a) A noisy input signal will produce a noisy demodulated
signal, blue trace. The underlying signal without the noise is plotted
as a black dashed trace. (b) Applying a filter with bandwidth f−3dB =
fm = 100 Hz will eliminate most of the noise but will also affect the
detected signal. (c) Same as (b) but with f−3dB = fm/5 = 20 Hz.

be larger than themaximumdemodulation bandwidth
of the first lock-in unit. In direct sideband demodula-
tion, the signal is demodulated at fc ± fm in a single
step, and the accessible modulation frequencies are
only limited by the frequency range of the lock-in am-
plifier. Also, direct sideband demodulation works with
a single lock-in amplifier instead of two and is there-
fore usually the preferred choice.

Achieving high SNR
Reducing the filter bandwidth generally leads to
higher SNR at the expense of time resolution. What
other measures can be taken to improve the SNR?
If the signal strength cannot be increased, the noise
has to be reduced or avoided as much as possible.
However, noise is always present in analog signals
and arises from different sources, some of which are
of fundamental origin, for example Johnson-Nyquist
(thermal) noise, shot noise and flicker noise, while
others are of technical origin, as for example ground
loops, interference, cross-talk, 50–60 Hz noise or
electromagnetic pick-up. The magnitude of a random
voltage noise Vnoise(t) is specified by its standard devi-
ation. In the frequency domain, noise is characterized
by its power spectral density |vn(ω)|2 in units of V2/Hz,
or by |vn(ω)| in units of V/√Hz.
The qualitative spectrum in Figure 12 shows that differ-
ent noise sources have different frequency dependen-
cies: while Johnson-Nyquist noise has a flat spectrum
for all practical frequencies and therefore contributes
to the “white noise”, flicker noise has a 1/f frequency
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Figure 12. Qualitative noise spectrum of a typical experiment. The
measurement frequency should be chosen in a region with small
background, avoiding any discrete peaks coming from technical
sources. In the example, f2 will yield better results than f1 for the
same filter bandwidth, since it is located in a clean white noise re-
gion above the 1/f noise at low frequencies.

dependence (“pink noise”). If there is some freedom
in the choice of modulation frequency, we can zoom
in to a part of the spectrum where the noise level is
lowest. Often higher frequencies where the spectrum
consists of white noise characteristics work best. Fig-
ure 12 illustrates this approach: the amount of noise
inside a filter, indicatedby the blue and gray filled area,
is larger for example in the lower frequency 1/f noise
region. Hence, the SNR at f2 is higher than at f1 using
the same filter bandwidth, because the noise density
is lower as long as other noise sources, such as as ra-
dio and wireless transmission are avoided.
To give a more quantitative example, let us assume
wewant tomeasure a sinusoidal signal with amplitude
of 1 μV across a 1 MΩ resistor with a SNR larger than
10. Such a resistor R exhibits a thermal noise with a
power spectral density of v2n = 4kB TR, which amounts
to about

√
v2n = 0.127

√
R nV/√Hz =127 nV/√Hz at T =

300 K room temperature1. In this example, thermal
noise is identified as the dominant noise source. It
is clearly stronger than the lock-in input noise of typ-
ically less than 10 nV/√Hz. We can thus calculate the
SNR as

SNR =
1 μV

127 nV/
√
Hz ·

√
fNEP

= 10 (14)

By solving this equation for fNEP, we calculate that we
need to select a NEP filter bandwidth of 620 mHz or
less to achieve a SNR of 10. We choose a 4th order fil-
ter. From Table 1 we can calculate the corresponding
cutoff frequency f−3dB = 549mHz, the time constant τ
= 126 ms, and the settling time to 1% is 1.26 s.
To further increase the SNRby a factor of 10, wewould
need to decrease the filter bandwidth by a factor of
100, because the noise amplitude is proportional to

1Boltzmann constant kB = 1.381×10−23 V2/(Ω Hz K)
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Figure 13. (a) Analog lock-in amplifier: the signal is split into two
paths, mixed with the reference signal, filtered and then converted
to digital. (b) Digital lock-in amplifier: the signal is digitized and then
multiplied with the reference signal and filtered.

the square root of the bandwidth. The settling time to
1% then increases tomore than 2minutes. The lock-in
technique can support such long measurements be-
cause it is insensitive to DC offset drift in the input
signal. Nonetheless, other sources of drift such as
changes in the DUT resistance, or in amplifier gain,
may affect long measurements. Maintaining stable
conditions, especially a constant temperature, is then
crucial.

State of the art
Since the early 1930s, lock-in amplifiers have come
a long way. Starting from vacuum tubes, the instru-
ment technology has now fully transitioned to the dig-
ital domain. In digital lock-in amplifiers, the input sig-
nal is converted to the digital domain by an analog-
to-digital converter (ADC) and all subsequent steps
are carried out numerically by digital signal process-
ing (DSP), as shown in Figure 13 (b). In contrast, ana-
log lock-in amplifiers use analog elements like voltage-
controlled oscillators, mixers and simple RC filters for
signal processing. There are also hybrid versions [9],
as sketched in Figure 13 (a), which digitize the signals
only after the analog mixing stage before or after fil-
tering.
The transition from analog to digital was fueled by
the availability of ADCs and DACs with ever increas-
ing speed, resolution and linearity. This development
helped to push the frequency range, input noise and
dynamic reserve to new limits. In addition, digital sig-
nal processing ismuch less prone to errors introduced
by a mismatch of signal pathways, to cross-talk and
to drifts, caused for instance by temperature changes.
This is particularly critical at higher frequencies. The
biggest advantage of the digital approach is probably
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Figure 14. Zurich Instruments’ lock-in amplifiers represent the state of the art of lock-in technology. Thanks to their different frequency ranges,
they are the ideal choice for applications going frommaterial characterization to photonics and quantum technologies. With an input frequency
range from DC to 1.8 GHz and 8.5 GHz, respectively, the GHFLI and the SHFLI have pioneered lock-in detection for microwave frequencies.
All instruments integrate a large amount of functionality, as illustrated in Figure 16, and take advantage of the advanced instrument control
software LabOne® (see Figure 15).

the ability to analyze the signal in multiple ways si-
multaneously without loss of SNR. As mentioned ear-
lier, this enables not only better dual-phase demodu-
lation, but also the analysis of several frequency com-
ponents of a signal directly, without the need to cas-
cade multiple instruments with all the accompanying
detrimental effects.
After the transition from analog to digital, another sig-
nificant step of innovation was sparked by the avail-
ability of field programmable gate arrays (FPGA) with
high computing power, abundant memory and speed.
FPGAs are well understood as digital clockworks that
can be flexibly programmed to carry out almost any
desired signal processing task in real time. The natu-
ral extension of the lock-in is to add time-domain and
frequency-domain analysis before and after demodu-
lation, something thatwould otherwise be donewith a
separate scope and spectrum analyzer. Furthermore,
a single instrument can contain boxcar averagers to
analyze signals with low duty cycle, PID and PLL con-
trollers for feedback loops and arithmetic units to pro-
cess measurement data in real time. The measure-
ment signals can then be transferred to a computer
for further analysis. If an analog interface to another
instrument is needed, measurement data from differ-
ent functional units are easily converted back to the
analog domain using high-resolution DACs.

Today, the most advanced instruments in terms of
speed and level of integration are Zurich Instruments’
lock-in amplifiers. Figure 14 shows all instruments or-
dered by their signal input bandwidth. With its ex-
cellent analog performance and versatile time- and
frequency-domain analysis toolset, the MFLI is the
state of the art for low-frequency measurements [5].
In 2022, Zurich Instruments pioneered lock-in amplifi-
cation for microwave frequencies by introducing the
GHFLI and the SHFLI. Despite their high frequencies,
they provide an input noise of only 3.5 nV/√Hz and
a dynamic reserve of 100 dB [13]. The high level of
integration that characterizes all instruments is illus-
trated in Figure 16, where the main functional compo-
nents and interconnections of the UHFLI are shown
[14]. Functionality that used to require an entire rack
of instruments is now housed in a single instrument.

Clearly, the wealth of functionality presented in Fig-
ure 16 cannot be accessed and controlled with a few
knobs and buttons on the front panel. Instead, all of
Zurich Instruments’ lock-in amplifiers are entirely con-
trolled from a computer running LabOne®, an instru-
ment control software that provides a graphical user
interface to any device with a web browser, as shown
in Figure 15. High-level tools such as the Paramet-
ric Sweeper, the Data Acquisition Module (DAQ), or
the PID Advisor exploit the available processing power
of the host computer to enable more efficient work-
flows. LabOne also offers programming interfaces for
Python, C,MATLAB®, LabVIEWTM and .NET to facilitate
the integration of the measurement instrument into
existing experiment control environments.

Figure 15. The LabOne® user interface of Zurich Instruments’ lock-
in amplifiers uses the latest web browser technology. The instru-
ments can be controlled frommultiple browser sessions on various
PCs, tablets, etc. at the same time. Every signal analysis and con-
trol tool has a dedicated tab. Some of the functionality is intuitively
displayed in form of block diagrams.
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Figure 16. Block diagram showing the Zurich Instruments UHFLI’s main functional entities and the signal flow between them. Fast digital sig-
nal processing takes place inside the instrument’s FPGA but also on the computer connected by USB or 1GbE running the instrument control
software LabOne®. The main functional components inside the instrument are the 8 dual-phase demodulators, an oscilloscope (Scope) with
digitizer functionality (DIG) and FFT , PID modules with PLL capability, an arithmetic unit (AU), a boxcar averager with periodic waveform ana-
lyzer (PWA) and a pulse counter module (CNT). For signal generation the instrument provides sinusoidal signal generators (OSC) and arbitrary
waveform generators (AWG) for complex signal shapes. The standard configuration is shown in blue, whereas the optional upgrades are shown
in orange. The LabOne control software running on the PC adds a parametric sweeper, a spectrum analyzer, a numerical parameter display, a
plotter, a data acquisition module (DAQ) for time-domain analysis and a harmonic analyzer.
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